Evaluation of Chemical Sensor Technologies for Air Filter Lifetime and Performance Monitoring

David W. Weir, Jeremy Greenblatt, Russell Chung, Viet Nguyen, Eric J. Houser, R. Andrew McGill

Naval Research Laboratory Code 6375 4555 Overlook Ave. SW Washington, DC 20375

POC: R. Andrew McGill Tel 202-767-0063; Fax 202-767-5301 email: amcgill@ccf.nrl.navy.mil

David Weir Tel 202-404-6190; Fax 202-767-5301 email: dweir@ccs.nrl.navy.mil

OBJECTIVES & PAYOFFS

Objectives

Evaluate sensor
 technologies for
 implementation in a
 residual life indicator for
 carbon air filters

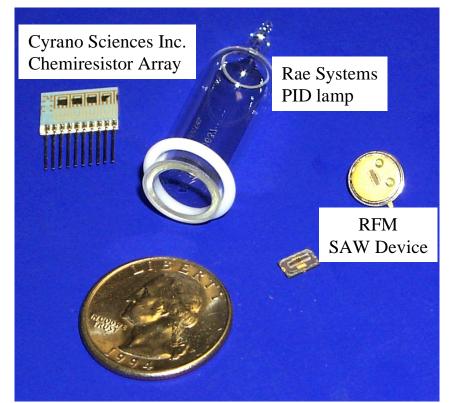
Alert users when filter
 needs replacing

Payoffs

- Gas sensors required by new
 DoD systems
 - **JSGPM**
 - **JTCOPS**
 - Air Monitor for Scuba Tank
 - Automobile/HVAC Dual Use
- Condition based monitoring provides
 - Increased User Confidence
 - Optimum Frequency of Filter Replacement

SENSOR REQUIREMENTS

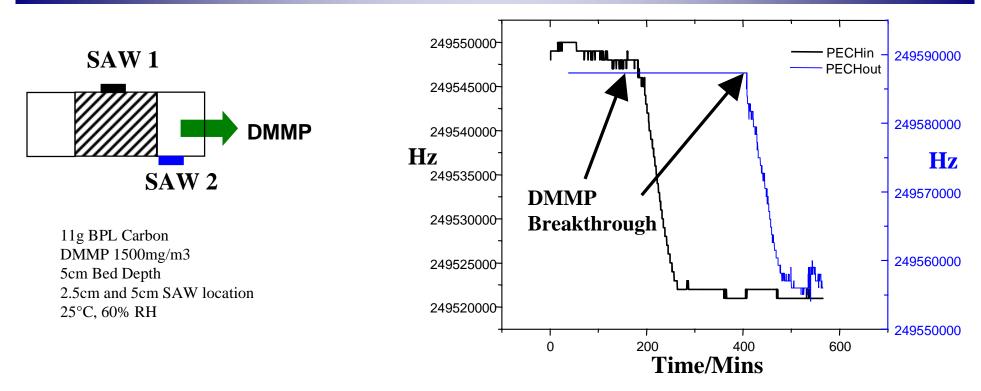
- Sensor must be able to withstand harsh filter environment
- Sensor must be able to respond to a wide variety of agents and toxic industrial chemicals (TIC's)
- Sensor must not give false alarm due to changes in temperature, RH, or flow rate
- Sensor must not interfere significantly with filter performance
- **Extended shelf and operational life is desirable**
- ► Low cost and reusability are desirable technology attributes
- ► Low milliwatt or zero power requirements are desirable


CHEMICAL SENSOR TRANSDUCERS

TECHNOLOGY COMPARISON

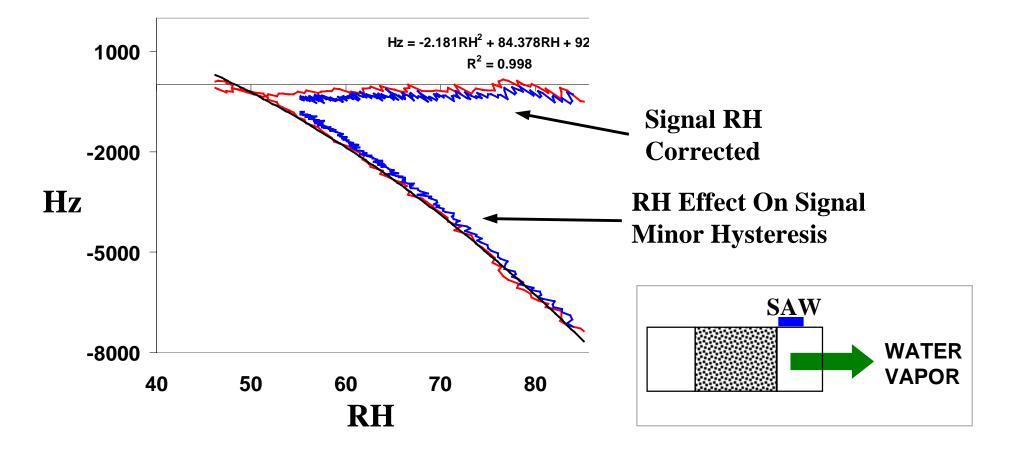
Variable Parameter	SAW		CR		PID	Colori	Colorimetric	
Sensitivity to Medium MW Gases	High		High		High	Hi	High	
Sensitivity to permanent gases	No		N	0	High	Yes	No	
Sensitivity to Wide Range of Vapors/Gases	Yes		Y	es	Yes	No	Yes	
Performance to untested Vapor	Yes		Y	es	Yes	No	Yes	
Requires Large Array	No		N	0	No	Yes	No	
Time to Initial Gas Signal Response	Fast		Fa	ist	Fast	Fa	Fast	
Time to Equilibrated Gas Signal Response	Fast		Fast		Fast	SI	Slow	
Ability To Quantify Concentration	Yes		Yes		Yes	Y	Yes	
Ability To Provide Alarm Confidence	High		High		High	Hi	High	
Dynamic Range	Large		Large		Small	Small		
Signal Temperature Sensitivity	High Low		Low		High	L	Low	
Signal Humidity Sensitivity	Moderate	Moderate Low		erate	Low	L	Low	
Signal Pressure Sensitivity	Low		Low		Low	L	Low	
System Longevity To Humidity Exposure	High		High		High	Hi	High	
Shelf Life	Long		Long		Moderate	Long		
Operational Longevity	Long		Long		Moderate	Moderate		
Form Factor	Small		Small		Moderate	Small		
Component Cost	Cheap		Cheap		Moderate	Cheap		
Computational Requirements	Low		Low		Low	L	Low	
Power Requirements	Low		Low		Low	Low	Zero	
Consumables	None		None		Yes	Y	Yes	
Reusability	Yes		Yes Yes		No	N	No	
Technology Maturity	Lo	ng	Mod	Short	Long	Long	Short	

SIDE-BY-SIDE SENSOR TEST BED

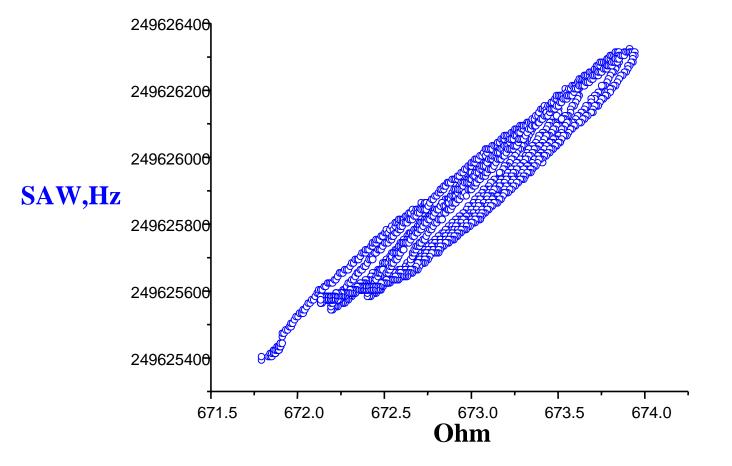


<u>Side-by-Side</u> Technology Comparison:

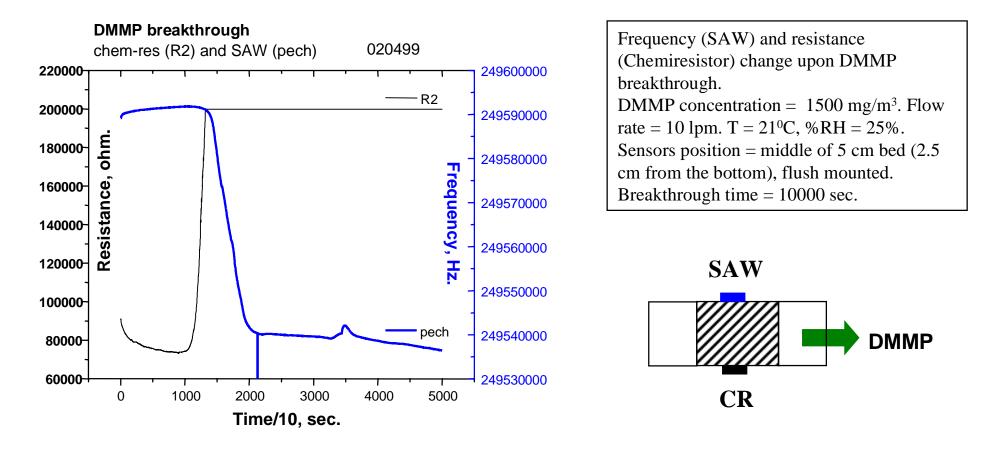
- Chemiresistor (CR)
- Photoionization Detector (PID)
- Colorimetric (COL)


SAW EVALUATION at RH=60% with DMMP CHALLENGE

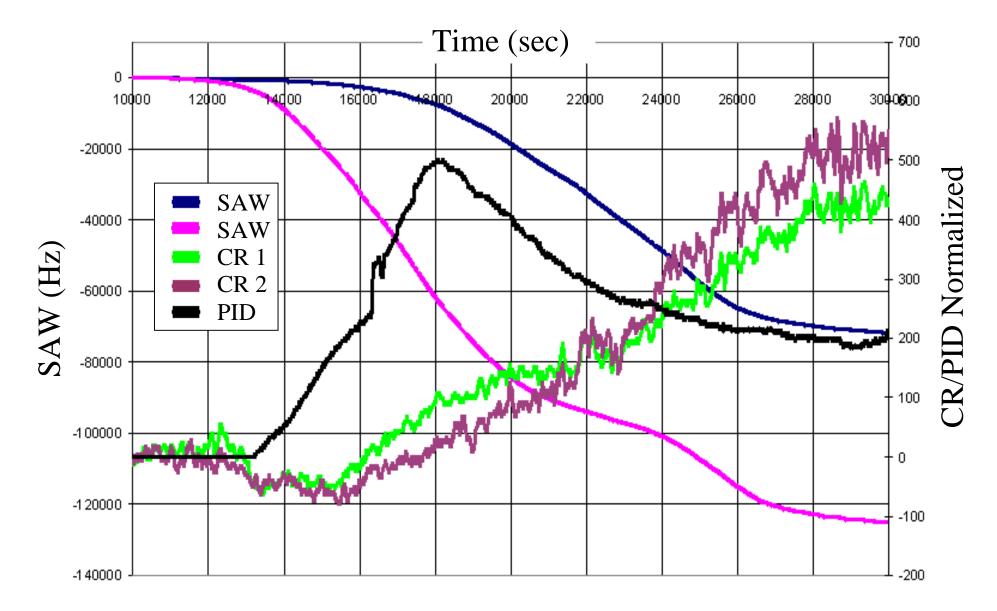
Sensors Incorporated in Filter Side-Wall or end of bed Provide:


Useful Information <u>Without</u> Signal/Power
 Cabling Through the Bed
 A Simpler Manufacturing Implementation

SAW HUMIDITY RESPONSE


Signal Response of the Sensor Can Be Corrected for RH & T Effects

TEMPERATURE EFFECT on SAW


Temperature Effect on Signal is Predictable with Minor Hysteresis Effects

CHEMIRESISTOR & SAW RESULTS

Both SAW and Chemiresistor Sensors Provide Similar Results

RESULTS: SAMPLE SIDE-BY-SIDE DATA WITH DMMP CHALLENGE

SUMMARY

- ➡ SAW & Chemiresistor sensors can monitor the entire breakthrough process and from low to high humidities
- Humidity and temperature signal effects can be safely factored out
- Placement of sensors parallel and flush to the wall of filter or at end of filter provides effective results and simple implementation
- Operation of SAW sensors is effective for ColPro and gas mask filter beds
- From preliminary data, CR & PID sensors provide similar information as SAW sensors